Monthly Archives: April 2017

쌍대공간

정의역이 벡터공간이고 공역이 체인 함수를 범함수(functional)라고 부른다. 또한 정의역이 노름선형공간 \(X\)인 범함수들의 모임 \(B(X,\,\mathbb{F})\)를 \(X\)의 쌍대공간(dual space)이라고 부르며 \(X^*\)로 나타낸다. \(X\)의 쌍대공간의 쌍대공간을 제 2 쌍대공간이라고 부르며 \(X^{**}\)로 나타낸다. \(X\)와 \(Y\)가 노름선형공간이고 \(T\)가 \(X\)로부터 \(Y\)로의 함수라고 하자. 이때 임의의 \(f \in Y^*\)와 임의의 \(x\in X\)에 대하여 \(T^* f(x) := f(Tx) \) 로 대응시키는 함수 \(T^* : Y^* \,\to\,… Read More »

선형작용소와 선형범함수

정의역과 공역이 노름선형공간인 함수를 작용소(operator)라고 부른다. 작용소 \(f : X \,\to\,Y\)가 단위구 \(B_1 (0) := \left\{x\in X \,\vert\, \lVert x \rVert < 1 \right\}\) 에서 유계일 때 \(f\)를 유계작용소(bounded operator)라고 부른다. 노름선형공간 \(X\)로부터 \(Y\)로의 유계선형작용소들의 모임을 \(B ( X,\,Y )\)로 표기한다. 유계성의 정의에 의하여 선형작용소 \(f\)가 유계일 필요충분조건은 양수 \(c\)가 존재하여 임의의 \(x\in X\)에 대하여 \(\lVert f(x) \rVert… Read More »

Hilbert 공간의 기본 성질

Hilbert 공간의 중요한 성질 중 하나는 \(K\)가 닫힌볼록집합이고 \(x\)가 \(K\) 밖의 점일 때, \(x\)와 가장 가까운 \(K\)의 점이 존재한다는 것이다. 정리 1. (사영 정리) \(X\)가 Hilbert 공간이고 \(K\)가 \(X\)의 닫힌 볼록부분집합이며 \(x\in X\)라고 하자. 그러면 \(\left\lVert x- \overline{x} \right\rVert = \inf_{y\in K} \lVert x-y \rVert \) 를 만족시키는 \(\overline{x} \in K\)가 유일하게 존재한다. 증명. 일반성을 잃지 않고 \(x=0\)이라고… Read More »