Tag Archives: ZFC

ZFC 집합론의 Skolem 역리

집합론을 공리적으로 연구하기 위해 사용할 수 있는 집합론 공리 체계는 여러 가지가 있다. ZFC가 그 대표적인 공리 체계이다. 수학자는 이러한 공리 체계 중에서 자신이 원하는 것을 하나 택하여 정착할 수 있다. 하지만 집합론의 공리 체계 중 하나에 정착한다 하더라도 그것이 집합론을 건설하기에 충분한지에 대해서는 항상 의문으로 남을 수밖에 없다. 예컨대 ZFC 공리계에서는 연속체 가설을 풀 수 없다. 설령… Read More »

집합의 기수

유한집합의 크기는 원소의 개수로 나타낼 수 있다. 하지만 무한집합의 크기는 자연수로 나타낼 수 없다. 대신 '원소의 개수'라는 개념을 확장하여 '기수'를 사용할 수 있다. 기수를 정의하는 방법은 '기수 공리'를 이용하는 공리적 방법과 서수로부터 기수를 정의하는 '구성적 방법'이 있다. 여기서는 구성적 방법을 살펴보자. 1. 기수의 정의 먼저 서수를 이용하여 기수를 정의한다. 정의 1.  집합의 기수. \(\alpha\)가 서수이고 \(\alpha\)의 임의의 절단(section)이… Read More »